- If P(ωi∣x)=maxjP(ωj∣x), then x∈ωi
- If p(x∣ωi)P(ωi)=maxjp(x∣ωj)P(ωj), then x∈ωi
- If l(x)=p(x∣ω2)p(x∣ω1)>P(ω1)P(ω2), then x∈ω1, and vice versa.
- Let h(x)=−ln[l(x)]=−lnp(x∣ω1)+lnp(x∣ω2).
- If h(x)<ln(p(ω2)p(ω1)), then x∈ω1, and vice versa.
We call l(x) as the likelihood ratio, and h(x) as the log-likelihood ratio.